Bayesian Scale Estimation for Monocular SLAM Based on Generic Object Detection for Correcting Scale Drift
نویسندگان
چکیده
This work proposes a new, online algorithm for estimating the local scale correction to apply to the output of a monocular SLAM system and obtain an as faithful as possible metric reconstruction of the 3D map and of the camera trajectory. Within a Bayesian framework, it integrates observations from a deep-learning based generic object detector and a prior on the evolution of the scale drift. For each observation class, a predefined prior on the heights of the class objects is used. This allows to define the observations likelihood. Due to the scale drift inherent to monocular SLAM systems, we integrate a rough model on the dynamics of scale drift. Quantitative evaluations of the system are presented on the KITTI dataset, and compared with different approaches. The results show a superior performance of our proposal in terms of relative translational error when compared to other monocular systems.
منابع مشابه
LSD-SLAM: Large-Scale Direct Monocular SLAM
We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These ar...
متن کاملStability-based Scale Estimation of Monocular SLAM for Autonomous Quadrotor Navigation
We propose a novel method to deal with the scale ambiguity in monocular SLAM based on control stability. We analytically show that (1) using unscaled state feedback from monocular SLAM for control can lead to system instability, and (2) there is a unique linear relationship between the absolute scale of the SLAM system and the control gain at which instability arises. Using this property, our m...
متن کاملScale Drift-Aware Large Scale Monocular SLAM
State of the art visual SLAM systems have recently been presented which are capable of accurate, large-scale and real-time performance, but most of these require stereo vision. Important application areas in robotics and beyond open up if similar performance can be demonstrated using monocular vision, since a single camera will always be cheaper, more compact and easier to calibrate than a mult...
متن کاملMonocular SLAM for Autonomous Robots with Enhanced Features Initialization
This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second came...
متن کاملDimensionless Monocular SLAM
It has recently been demonstrated that the fundamental computer vision problem of structure from motion with a single camera can be tackled using the sequential, probabilistic methodology of monocular SLAM (Simultaneous Localisation and Mapping). A key part of this approach is to use the priors available on camera motion and scene structure to aid robust real-time tracking and ultimately enable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.02768 شماره
صفحات -
تاریخ انتشار 2017